National Repository of Grey Literature 4 records found  Search took 0.01 seconds. 
Analysis of organic dye degradation product after decomposition in diaphragm discharge
Nejezchleb, Martin ; Friedl, Zdeněk (referee) ; Čáslavský, Josef (advisor)
The diploma thesis is focused on the identification of degradation products of organic dye Saturn Red L4B resulting by degradation in diaphragm discharge, using separation techniques with mass spectrometric detection.
Study of electrolytic influence on organic dye decomposition in the diaphragm discharge in liquids
Davidová, Jaroslava ; Rašková, Zuzana (referee) ; Kozáková, Zdenka (advisor)
This Bachelor thesis is focused on study of chemical and physical influences which are proceed in diaphragm discharge in water solution. These processes could be used in water treatment. If DC non-pulsed voltage is applied, a significant influence of electrolysis must be taken into account. The main goal of this thesis is the estimation of electrolytic contribution to processes in the discharge. Theoretical part describes basic theory about creation of electrical discharges in water and electrolysis with emphasis on processes leading to destruction of organic compounds. Production of reactive particles (radicals, hydrogen peroxide, ozone, etc.) and electrochemical reactions on electrodes mainly belongs among these processes. This part describes analytical method (UV-VIS spectroscopy) which was used for determination of organic dyes concentration as well. Experimental part is oriented to experiment procedure which was carried out in an apparatus with separated anode and cathode area. Separation was made by dielectric diaphragm with a pinhole in the centre. Its initial diameter was 0.25 mm. Electrolytic decomposition was carried out at constant current of 30 mA and supplied power was about 14–32 W. Two Saturn dyes (Direct Blue 106 and Direct Red 79) were selected for experiments. As the decomposition was related to decoloration of the solution, UV-VIS spectroscopy in the range of 350–700 nm was used for determination of dye concentration. Next part focused on results presents various factors which had remarkable effect on decomposition of organic dyes. These factors were: various polarities of electrodes, conductivity and pH of solution, applied power, kind of electrolyte and structure of organic dye. The electrolysis had the significant influence on decomposition of small organic molecules. Decomposition was running mainly in the anode area where so called negative discharge was created. Optimal conditions were set by NaCl electrolyte with concentration providing initial conductivity of 500 S·cm-1. By the NaNO3 electrolyte half decomposition efficiency was achieved and in Na3PO4 electrolyte, the decomposition even didn’t run. The decomposition in the anode area was stimulated by the low pH value, which was decreasing during electrolysis. Generally, higher decomposition was achieved by the discharge than by pure electrolysis but the electrolysis had higher efficiency. In pure electrolysis, high rate of removal can be achieved by the application of a relatively low power. When bigger organic molecules were decomposed, the efficiency was higher by applying the discharge.
Analysis of organic dye degradation product after decomposition in diaphragm discharge
Nejezchleb, Martin ; Friedl, Zdeněk (referee) ; Čáslavský, Josef (advisor)
The diploma thesis is focused on the identification of degradation products of organic dye Saturn Red L4B resulting by degradation in diaphragm discharge, using separation techniques with mass spectrometric detection.
Study of electrolytic influence on organic dye decomposition in the diaphragm discharge in liquids
Davidová, Jaroslava ; Rašková, Zuzana (referee) ; Kozáková, Zdenka (advisor)
This Bachelor thesis is focused on study of chemical and physical influences which are proceed in diaphragm discharge in water solution. These processes could be used in water treatment. If DC non-pulsed voltage is applied, a significant influence of electrolysis must be taken into account. The main goal of this thesis is the estimation of electrolytic contribution to processes in the discharge. Theoretical part describes basic theory about creation of electrical discharges in water and electrolysis with emphasis on processes leading to destruction of organic compounds. Production of reactive particles (radicals, hydrogen peroxide, ozone, etc.) and electrochemical reactions on electrodes mainly belongs among these processes. This part describes analytical method (UV-VIS spectroscopy) which was used for determination of organic dyes concentration as well. Experimental part is oriented to experiment procedure which was carried out in an apparatus with separated anode and cathode area. Separation was made by dielectric diaphragm with a pinhole in the centre. Its initial diameter was 0.25 mm. Electrolytic decomposition was carried out at constant current of 30 mA and supplied power was about 14–32 W. Two Saturn dyes (Direct Blue 106 and Direct Red 79) were selected for experiments. As the decomposition was related to decoloration of the solution, UV-VIS spectroscopy in the range of 350–700 nm was used for determination of dye concentration. Next part focused on results presents various factors which had remarkable effect on decomposition of organic dyes. These factors were: various polarities of electrodes, conductivity and pH of solution, applied power, kind of electrolyte and structure of organic dye. The electrolysis had the significant influence on decomposition of small organic molecules. Decomposition was running mainly in the anode area where so called negative discharge was created. Optimal conditions were set by NaCl electrolyte with concentration providing initial conductivity of 500 S·cm-1. By the NaNO3 electrolyte half decomposition efficiency was achieved and in Na3PO4 electrolyte, the decomposition even didn’t run. The decomposition in the anode area was stimulated by the low pH value, which was decreasing during electrolysis. Generally, higher decomposition was achieved by the discharge than by pure electrolysis but the electrolysis had higher efficiency. In pure electrolysis, high rate of removal can be achieved by the application of a relatively low power. When bigger organic molecules were decomposed, the efficiency was higher by applying the discharge.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.